# Financial Derivatives Toolbox™ Release Notes

#### How to Contact MathWorks



www.mathworks.com

comp.soft-sys.matlab

www.mathworks.com/contact TS.html Technical Support

Web

Newsgroup



suggest@mathworks.com bugs@mathworks.com

doc@mathworks.com

service@mathworks.com info@mathworks.com

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes Sales, pricing, and general information



508-647-7000 (Phone)



508-647-7001 (Fax)



The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Financial Derivatives Toolbox<sup>TM</sup> Release Notes

© COPYRIGHT 2004–2011 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

#### **Trademarks**

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

#### **Patents**

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

# Contents

| Summary by Version                                               | 1  |
|------------------------------------------------------------------|----|
| Version 5.7 (R2011a) Financial Derivatives Toolbox<br>Software   | 4  |
| Version 5.6 (R2010b) Financial Derivatives Toolbox<br>Software   | 6  |
| Version 5.5.1 (R2010a) Financial Derivatives Toolbox<br>Software | 8  |
| Version 5.5 (R2009b) Financial Derivatives Toolbox<br>Software   | 9  |
| Version 5.4 (R2009a) Financial Derivatives Toolbox<br>Software   | 11 |
| Version 5.3 (R2008b) Financial Derivatives Toolbox<br>Software   | 14 |
| Version 5.2 (R2008a) Financial Derivatives Toolbox Software      | 17 |
| Version 5.1 (R2007b) Financial Derivatives Toolbox<br>Software   | 21 |
| Version 5.0 (R2007a) Financial Derivatives Toolbox<br>Software   | 24 |
| Version 4.1 (R2006b) Financial Derivatives Toolbox<br>Software   | 28 |
| Version 4.0.1 (R2006a) Financial Derivatives Toolbox<br>Software | 29 |

| Version 4.0 (R14SP3) Financial Derivatives Toolbox Software      | 30 |
|------------------------------------------------------------------|----|
| Version 3.0 (R14) Financial Derivatives Toolbox Software         | 34 |
| Compatibility Summary for Financial Derivatives Toolbox Software | 37 |

#### **Summary by Version**

This table provides quick access to what's new in each version. For clarification, see "Using Release Notes" on page 2.

| Version (Release)               | New Features and<br>Changes | Version<br>Compatibility<br>Considerations | Fixed Bugs and<br>Known Problems |
|---------------------------------|-----------------------------|--------------------------------------------|----------------------------------|
| Latest Version<br>V5.7 (R2011a) | Yes<br>Details              | No                                         | Bug Reports<br>Includes fixes    |
| V5.6 (R2010b)                   | Yes<br>Details              | No                                         | Bug Reports<br>Includes fixes    |
| V5.5.1 (R2010a)                 | No                          | No                                         | Bug Reports<br>Includes fixes    |
| V5.5 (R2009b)                   | Yes<br>Details              | No                                         | Bug Reports<br>Includes fixes    |
| V5.4 (R2009a)                   | Yes<br>Details              | No                                         | Bug Reports<br>Includes fixes    |
| V5.3 (R2008b)                   | Yes<br>Details              | No                                         | Bug Reports<br>Includes fixes    |
| V5.2 (R2008a)                   | Yes<br>Details              | No                                         | Bug Reports<br>Includes fixes    |
| V5.1 (R2007b)                   | Yes<br>Details              | No                                         | Bug Reports                      |
| V5.0 (R2007a)                   | Yes<br>Details              | No                                         | Bug Reports                      |
| V4.1 (R2006b)                   | No                          | No                                         | Bug Reports                      |
| V4.0.1 (R2006a)                 | No                          | No                                         | Bug Reports                      |
| V4.0 (R14SP3)                   | Yes<br>Details              | No                                         | Bug Reports                      |
| V3.0 (R14)                      | Yes<br>Details              | No                                         | No bug fixes                     |

#### **Using Release Notes**

Use release notes when upgrading to a newer version to learn about:

- New features
- Changes
- Potential impact on your existing files and practices

Review the release notes for other MathWorks® products required for this product (for example, MATLAB® or Simulink®). Determine if enhancements, bugs, or compatibility considerations in other products impact you.

If you are upgrading from a software version other than the most recent one, review the current release notes and all interim versions. For example, when you upgrade from V1.0 to V1.2, review the release notes for V1.1 and V1.2.

#### What Is in the Release Notes

#### **New Features and Changes**

- New functionality
- Changes to existing functionality

#### **Version Compatibility Considerations**

When a new feature or change introduces a reported incompatibility between versions, the **Compatibility Considerations** subsection explains the impact.

Compatibility issues reported after the product release appear under Bug Reports at the MathWorks Web site. Bug fixes can sometimes result in incompatibilities, so review the fixed bugs in Bug Reports for any compatibility impact.

#### Fixed Bugs and Known Problems

MathWorks offers a user-searchable Bug Reports database so you can view Bug Reports. The development team updates this database at release time

and as more information becomes available. Bug Reports include provisions for any known workarounds or file replacements. Information is available for bugs existing in or fixed in Release 14SP2 or later. Information is not available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

#### **Documentation on the MathWorks Web Site**

Related documentation is available on mathworks.com for the latest release and for previous releases:

- Latest product documentation
- Archived documentation

# Version 5.7 (R2011a) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 5.7 (R2011a):

| New Features and Changes | Version Compatibility Considerations | Fixed Bugs and Known<br>Problems |
|--------------------------|--------------------------------------|----------------------------------|
| Yes<br>Details below     | No                                   | Bug Reports<br>Includes fixes    |

New features and changes introduced in this version are:

- "OAS Support for Callable and Puttable Bonds" on page 4
- "Additional Algorithm Support for Hull-White Model" on page 4
- "Case Sensitivity for Message IDs" on page 5

#### **OAS Support for Callable and Puttable Bonds**

Compute Option Adjusted Spread (OAS) for callable and puttable bonds using interest-rate tree models:

| Function | Purpose                      |
|----------|------------------------------|
| oasbybdt | Compute OAS using BDT model. |
| oasbyhjm | Compute OAS using HJM model. |
| oasbyhw  | Compute OAS using HW model.  |
| oasbybk  | Compute OAS using BK model.  |

#### Additional Algorithm Support for Hull-White Model

hwtree supports two tree-node connectivity algorithms. HW1996 is based on the original paper published in the *Journal of Derivatives*. HW2000 is the general version of the algorithm, as specified in the paper published in August 2000. For more information, see "Calibrating the Hull-White Model Using Market Data".

#### Case Sensitivity for Message IDs

Financial Derivatives  $Toolbox^{TM}$  message IDs for errors and warnings are now case sensitive. The uppercase message ID Finderiv: is changed to lowercase finderiv:. For example:

```
error('Finderiv:supersharebybls:InsufficientInputs', ..
is now
error('finderiv:supersharebybls:InsufficientInputs', ...
```

# Version 5.6 (R2010b) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 5.6 (R2010b):

| New Features and Changes | Version Compatibility Considerations | Fixed Bugs and Known<br>Problems |
|--------------------------|--------------------------------------|----------------------------------|
| Yes<br>Details below     | No                                   | Bug Reports<br>Includes fixes    |

New features and changes introduced in this version are:

- "Support for Leisen-Reimer Binomial Trees for Option Valuation" on page 6
- "New Input and Output Options for Interest-Rate Swap Functionality" on page 7

### Support for Leisen-Reimer Binomial Trees for Option Valuation

Support for Leisen-Reimer binomial trees enables modeling of equity options using fewer steps with minimal oscillating behavior:

| Function         | Purpose                                                                                |
|------------------|----------------------------------------------------------------------------------------|
| lrtree           | Build a Leisen-Reimer stock tree.                                                      |
| lrtimespec       | Specify a time structure for a Leisen-Reimer binomial tree.                            |
| optstockbylr     | Price options on stocks using the Leisen-Reimer binomial tree model.                   |
| optstocksensbylr | Calculate option prices and sensitivities using the Leisen-Reimer binomial tree model. |

# New Input and Output Options for Interest-Rate Swap Functionality

The following functions are enhanced to support new name-value pair arguments:

- bondbyzero
- fixedbyzero
- floatbyzero
- swapbyzero

In addition, swapbyzero supports new outputs for cash flows, cash flow dates, and accrued interest.

# Version 5.5.1 (R2010a) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 5.5.1 (R2010a):

| New Features and Changes | Version Compatibility Considerations | Fixed Bugs and Known<br>Problems |
|--------------------------|--------------------------------------|----------------------------------|
| No                       | No                                   | Bug Reports<br>Includes fixes    |

There are no new features or changes in this version.

# Version 5.5 (R2009b) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 5.5 (R2009b):

| New Features and Changes | Version Compatibility Considerations | Fixed Bugs and Known<br>Problems |
|--------------------------|--------------------------------------|----------------------------------|
| Yes<br>Details below     | No                                   | Bug Reports<br>Includes fixes    |

New features and changes introduced in this version are:

- "Support for the Basket Option Instrument Using the Longstaff-Schwartz Model and Nengjiu Ju Approximation Model" on page 9
- "Support for the BUS/252 Day-Count Convention" on page 10

# Support for the Basket Option Instrument Using the Longstaff-Schwartz Model and Nengjiu Ju Approximation Model

Supports the following using the Longstaff-Schwartz model:

| Function        | Purpose                                                                                  |
|-----------------|------------------------------------------------------------------------------------------|
| basketbyls      | Price basket options using the Longstaff-Schwartz model.                                 |
| basketsensbyls  | Calculate price and sensitivities for basket options using the Longstaff-Schwartz model. |
| basketstockspec | Specify basket stock structure.                                                          |

Supports the following using the Nengjiu Ju approximation model:

| Function       | Purpose                                                                          |
|----------------|----------------------------------------------------------------------------------|
| basketbyju     | Price basket options using the Nengjiu Ju model.                                 |
| basketsensbyju | Calculate price and sensitivities for basket options using the Nengjiu Ju model. |

For more information, see Basket Options in the Financial Derivatives Toolbox User's Guide documentation.

#### Support for the BUS/252 Day-Count Convention

Support for the Basis day-count convention for BUS/252. BUS/252 is the number of business days between the previous coupon payment and the settlement data divided by 252. BUS/252 business days are non-weekend, non-holiday days. The holidays.m file defines holidays.

# Version 5.4 (R2009a) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 5.4 (R2009a):

| New Features and Changes | Version Compatibility Considerations | Fixed Bugs and Known<br>Problems |
|--------------------------|--------------------------------------|----------------------------------|
| Yes<br>Details below     | No                                   | Bug Reports<br>Includes fixes    |

New features and changes introduced in this version are:

- "Support for European Digital Options Using the Black-Scholes Pricing Model" on page 11
- "Support for European Rainbow Options Using the Stulz Option Pricing Model" on page 12
- "Support for Caps and Floors Using the Black Option Pricing Model" on page 13
- "Support for Calibrating the Hull-White Model Using Market Data of Caps and Floors" on page 13

# Support for European Digital Options Using the Black-Scholes Pricing Model

Supports the following:

| Function   | Purpose                                                                            |
|------------|------------------------------------------------------------------------------------|
| cashbybls  | Calculate price of cash-or-nothing digital options using the Black-Scholes model.  |
| assetbybls | Calculate price of asset-or-nothing digital options using the Black-Scholes model. |
| gapbybls   | Calculate price of gap digital options using the Black-Scholes model.              |

| Function            | Purpose                                                                                              |
|---------------------|------------------------------------------------------------------------------------------------------|
| supersharebybls     | Calculate price of supershare digital options using the Black-Scholes model.                         |
| cashsensbybls       | Calculate price and sensitivities of cash-or-nothing digital options using the Black-Scholes model.  |
| assetsensbybls      | Calculate price and sensitivities of asset-or-nothing digital options using the Black-Scholes model. |
| gapsensbybls        | Calculate price and sensitivities of gap digital options using the Black-Scholes model.              |
| supersharesensbybls | Calculate price and sensitivities of supershare digital options using the Black-Scholes model.       |

For more information, see "Digital Option".

# Support for European Rainbow Options Using the Stulz Option Pricing Model

Supports the following:

| Function            | Purpose                                                                                                                  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|
| minassetbystulz     | Calculate European rainbow option price on<br>minimum of two risky assets using the Stulz<br>option pricing model.       |
| minassetsensbystulz | Calculate European rainbow option prices and sensitivities on minimum of two risky assets using the Stulz pricing model. |
| maxassetbystulz     | Calculate European rainbow option price on maximum of two risky assets using the Stulz option pricing model.             |
| maxassetsensbystulz | Calculate European rainbow option prices and sensitivities on maximum of two risky assets using the Stulz pricing model. |

For more information, see "Rainbow Option".

# Support for Caps and Floors Using the Black Option Pricing Model

Supports the following:

| Function   | Purpose                                            |  |
|------------|----------------------------------------------------|--|
| capbyblk   | Price caps using the Black option pricing model.   |  |
| floorbyblk | Price floors using the Black option pricing model. |  |

For more information, see "Interest-Rate Derivatives Using Closed-Form Solutions".

# Support for Calibrating the Hull-White Model Using Market Data of Caps and Floors

Supports the following:

| Function     | Purpose                                 |  |
|--------------|-----------------------------------------|--|
| hwcalbycap   | Calibrate Hull-White tree using caps.   |  |
| hwcalbyfloor | Calibrate Hull-White tree using floors. |  |

For more information, see "Calibrating the Hull-White Model Using Market Data".

# Version 5.3 (R2008b) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 5.3 (R2008b):

| New Features and Changes | Version Compatibility Considerations | Fixed Bugs and Known<br>Problems |
|--------------------------|--------------------------------------|----------------------------------|
| Yes<br>Details below     | No                                   | Bug Reports<br>Includes fixes    |

New features and changes introduced in this version are:

- "Support for European Chooser Options Using the Black-Scholes Model" on page 14
- "Support for the Black Model for European Options" on page 15
- "Support for the Black-Scholes Model for European Options with Different Type of Dividends" on page 15
- "Support for the Bjerksund-Stensland Model for American Options with Continuous Dividend" on page 15
- "Support for the Roll-Geske-Whaley Model for American Call Options with a Single Cash Dividend" on page 16
- "Enhancements to stockspec" on page 16

## Support for European Chooser Options Using the Black-Scholes Model

Supports the following:

| Function     | Purpose                                                               |
|--------------|-----------------------------------------------------------------------|
| chooserbybls | Prices European simple chooser options using the Black-Scholes model. |

#### **Support for the Black Model for European Options**

Supports the following:

| Function          | Purpose                                                                              |
|-------------------|--------------------------------------------------------------------------------------|
| optstockbyblk     | Prices options using the Black option pricing model.                                 |
| optstocksensbyblk | Calculates option prices and sensitivities on futures using the Black pricing model. |
| impvbyblk         | Calculates implied volatility using the Black option pricing model.                  |

For more information on the Black model, see "Computing Prices and Sensitivities Using the Black Model".

# Support for the Black-Scholes Model for European Options with Different Type of Dividends

Supports the following:

| Function          | Purpose                                                                                             |
|-------------------|-----------------------------------------------------------------------------------------------------|
| optstockbybls     | Prices options using the Black-Scholes option pricing model.                                        |
| optstocksensbybls | Calculates option prices and sensitivities on futures using the Black-Scholes option pricing model. |
| impvbybls         | Calculate implied volatility using the Black–Scholes option pricing model.                          |

For more information on the Black-Scholes model, see "Computing Prices and Sensitivities Using the Black-Scholes Model".

#### Support for the Bjerksund-Stensland Model for American Options with Continuous Dividend

Supports the following:

| Function          | Purpose                                                                                                   |
|-------------------|-----------------------------------------------------------------------------------------------------------|
| optstockbybjs     | Prices options using the Bjerksund-Stensland option pricing model.                                        |
| optstocksensbybjs | Calculates option prices and sensitivities on futures using the Bjerksund-Stensland option pricing model. |
| impvbybjs         | Calculates implied volatility using the Bjerksund-Stensland option pricing model.                         |

For more information on the Bjerksund-Stensland model, see "Computing Prices and Sensitivities Using the Bjerksund-Stensland Model".

#### Support for the Roll-Geske-Whaley Model for American Call Options with a Single Cash Dividend

Supports the following:

| Function          | Purpose                                                                                                 |
|-------------------|---------------------------------------------------------------------------------------------------------|
| optstockbyrgw     | Prices options using the Roll-Geske-Whaley option pricing model.                                        |
| optstocksensbyrgw | Calculates option prices and sensitivities on futures using the Roll-Geske-Whaley option pricing model. |
| impvbyrgw         | Calculates implied volatility using the Roll-Geske-Whaley option pricing model.                         |

For more information on the Roll-Geske-Whaley model, see "Computing Prices and Sensitivities Using the Roll-Geske-Whaley Model".

#### Enhancements to stockspec

stockspec is now capable of handling several instruments. This modified implementation of stockspec is particularly useful when pricing equity options using some of the equity models, such as the closed-form solutions and analytical approximations. For the equity tree models, stockspec takes only the first instrument represented in the structure StockSpec to build the equity tree.

# Version 5.2 (R2008a) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 5.2 (R2008a):

| New Features and Changes | Version Compatibility Considerations | Fixed Bugs and Known<br>Problems |
|--------------------------|--------------------------------------|----------------------------------|
| Yes<br>Details below     | No                                   | Bug Reports<br>Includes fixes    |

New features and changes introduced in this version are:

- "Pricing Callable and Puttable Bonds" on page 17
- "Support for Actual/365 (ISDA)" on page 18

#### **Pricing Callable and Puttable Bonds**

Supports the following pricing for callable and puttable bonds:

| Function      | Purpose                                                                            |
|---------------|------------------------------------------------------------------------------------|
| optembndbybdt | Price bonds with embedded options by a Black-Derman-Toy interest rate tree.        |
| optembndbybk  | Price bonds with embedded options by a Black-Karasinski interest-rate tree.        |
| optembndbyhjm | Price bonds with embedded options by an<br>Heath-Jarrow-Morton interest-rate tree. |
| optembndbyhw  | Price bonds with embedded options by a Hull-White interest-rate tree.              |
| instoptembnd  | Constructor for the 'Type', 'OptEmBond' instrument bond option.                    |

In addition, the following functions have been modified to support callable and puttable bonds:

• instadd

- bdtprice
- hwprice
- hjmprice
- bkprice
- bdtsens
- hwsens
- hjmsens
- bksens

#### Support for Actual/365 (ISDA)

The following functions now support day count conventions for the basis argument based on ISDA (International Swap Dealers Association) actual/365:

- bondbybdt
- bondbybk
- bondbyhjm
- bondbyhw
- bondbyzero
- capbybdt
- capbybk
- capbyhjm
- capbyhw
- cfbybdt
- cfbybk
- cfbyhjm
- cfbyhw
- cfbyzero
- date2time

- disc2rate
- fixedbybdt
- fixedbybk
- fixedbyhjm
- fixedbyhw
- fixedbyzero
- floatbybdt
- floatbybk
- floatbyhjm
- floatbyhw
- floatbyzero
- floorbybdt
- floorbybk
- floorbyhjm
- floorbyhw
- instbond
- instcap
- instcf
- instfixed
- instfloat
- instfloor
- instswap
- instswaption
- intenvset
- optbndbybdt
- optbndbybk
- optbndbyhjm

- optbndbyhw
- rate2disc
- swapbybdt
- swapbybk
- swapbyhjm
- swapbyhw
- swapbyzero
- swaptionbybdt
- swaptionbybk
- swaptionbyhjm
- swaptionbyhw
- time2date

# Version 5.1 (R2007b) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 5.1 (R2007b):

| New Features and Changes | Version Compatibility Considerations | Fixed Bugs and Known<br>Problems |
|--------------------------|--------------------------------------|----------------------------------|
| Yes<br>Details below     | No                                   | Bug Reports                      |

New features and changes introduced in this version are:

# ISMA Support for 30/360 Basis as a Variant of 30/360E with Annual Compounding

The following functions now support day count conventions for the basis argument to support 30/360 International Securities Market Association (ISMA) convention as a variant of 30/360E with annual compounding:

- bondbybdt
- bondbybk
- bondbyhjm
- bondbyhw
- bondbyzero
- capbybdt
- capbybk
- capbyhjm
- capbyhw
- cfbybdt
- cfbybk
- cfbyhjm

- cfbyhw
- cfbyzero
- date2time
- disc2rate
- fixedbybdt
- fixedbybk
- fixedbyhjm
- fixedbyhw
- fixedbyzero
- floatbybdt
- floatbybk
- floatbyhjm
- floatbyhw
- floatbyzero
- floorbybdt
- floorbybk
- floorbyhjm
- floorbyhw
- instbond
- instcap
- instcf
- instfixed
- instfloat
- instfloor
- instswap
- instswaption
- intenvset

- optbndbybdt
- optbndbybk
- optbndbyhjm
- optbndbyhw
- rate2disc
- swapbybdt
- swapbybk
- swapbyhjm
- swapbyhw
- swapbyzero
- swaptionbybdt
- swaptionbybk
- swaptionbyhjm
- swaptionbyhw
- time2date

# Version 5.0 (R2007a) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 5.0 (R2007a):

| New Features and Changes | Version Compatibility Considerations | Fixed Bugs and Known<br>Problems |
|--------------------------|--------------------------------------|----------------------------------|
| Yes<br>Details below     | No                                   | Bug Reports                      |

New features and changes introduced in this version are:

- "Pricing and Sensitivity from the Implied Trinomial Tree Stock Tree" on page 24
- "Implied Trinomial Tree Utilities" on page 25
- "Enhancement to the treeviewer Function" on page 25
- "ISMA Support" on page 25

### Pricing and Sensitivity from the Implied Trinomial Tree Stock Tree

The following table summarizes the functions supported for pricing and sensitivity from implied trinomial trees.

| Function     | Purpose                                                           |
|--------------|-------------------------------------------------------------------|
| ittprice     | Price instruments by an implied trinomial tree.                   |
| ittsens      | Instrument sensitivities and prices by an implied trinomial tree. |
| itttree      | Build an implied trinomial stock tree.                            |
| itttimespec  | Specify time structure for an implied trinomial tree.             |
| stockoptspec | Specify European stock options structure.                         |

#### **Implied Trinomial Tree Utilities**

The following table summarizes the functions supported for implied trinomial trees.

| Function      | Purpose                                               |
|---------------|-------------------------------------------------------|
| optstockbyitt | Price options on stocks by an implied trinomial tree. |
| barrierbyitt  | Price barrier options by an implied trinomial tree.   |
| asianbyitt    | Price Asian options by an implied trinomial tree.     |
| lookbackbyitt | Price lookback option from an implied trinomial tree. |
| compoundbyitt | Price compound options by an implied trinomial tree.  |

#### **Enhancement to the treeviewer Function**

The treeviewer function, which provides a graphical display of rates and prices, has been modified to accept Implied Trinomial Trees (ITTs) as input.

#### **ISMA Support**

The following functions now support the International Securities Market Association (ISMA) convention for the basis argument:

- bondbybdt
- bondbybk
- bondbyhjm
- bondbyhw
- bondbyzero
- capbybdt
- capbybk
- capbyhjm
- capbyhw
- cfbybdt
- cfbybk

- cfbyhjm
- cfbyhw
- cfbyzero
- date2time
- disc2rate
- fixedbybdt
- fixedbybk
- fixedbyhjm
- fixedbyhw
- fixedbyzero
- floatbybdt
- floatbybk
- floatbyhjm
- floatbyhw
- floatbyzero
- floorbybdt
- floorbybk
- floorbyhjm
- floorbyhw
- instbond
- instcap
- instcf
- instfixed
- instfloat
- instfloor
- instswap
- intenvset

- optbndbybdt
- optbndbybk
- optbndbyhjm
- optbndbyhw
- rate2disc
- swapbybdt
- swapbybk
- swapbyhjm
- swapbyhw
- swapbyzero
- time2date

# Version 4.1 (R2006b) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 4.1 (R2006b):

| Compatibility Fixed Bugs and Known Problems |                   |
|---------------------------------------------|-------------------|
| Bug Reports                                 |                   |
|                                             | erations Problems |

# Version 4.0.1 (R2006a) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 4.0.1 (R2006a):

| New Features and Changes | Version Compatibility Considerations | Fixed Bugs and Known<br>Problems |
|--------------------------|--------------------------------------|----------------------------------|
| No                       | No                                   | Bug Reports                      |

# Version 4.0 (R14SP3) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 4.0 (R14SP3):

| New Features and Changes | Version Compatibility Considerations | Fixed Bugs and Known<br>Problems |
|--------------------------|--------------------------------------|----------------------------------|
| Yes<br>Details below     | No                                   | Bug Reports                      |

New features and changes introduced in this version are:

- "New Interest Rate Models" on page 30
- "Recombining Trinomial Trees" on page 33
- "Enhancement to the treeviewer Function" on page 33

#### **New Interest Rate Models**

Two interest rate models have been introduced with Version 4.0:

• Hull-White (HW) model

The Hull-White model incorporates the initial term structure of interest rates and the volatility term structure to build a trinomial recombining tree of short rates. The resulting tree is used to value interest rate-dependent securities. The implementation of the HW model in Financial Derivatives Toolbox software is limited to one factor.

• Black-Karasinski (BK) model

The BK model is a single-factor, log-normal version of the Hull-White model.

#### Hull-White and Black-Karasinski Functions

The following tables summarize the Black-Karasinski and Hull-White functions by their category of usage.

#### **Price and Sensitivity from Black-Karasinski Trees**

| Function   | Purpose                                                         |
|------------|-----------------------------------------------------------------|
| bkprice    | Instrument prices from Black-Karasinski tree.                   |
| bksens     | Instrument prices and sensitivities from Black-Karasinski tree. |
| bktimespec | Specify time structure for Black-Karasinski tree.               |
| bktree     | Construct Black-Karasinski interest-rate tree.                  |
| bkvolspec  | Specify Black-Karasinski interest-rate volatility process.      |

#### **Price and Sensitivity from Hull-White Trees**

| Function   | Purpose                                                   |
|------------|-----------------------------------------------------------|
| hwprice    | Instrument prices from Hull-White tree.                   |
| hwsens     | Instrument prices and sensitivities from Hull-White tree. |
| hwtimespec | Specify time structure for Hull-White tree.               |
| hwtree     | Construct Hull-White interest-rate tree.                  |
| hwvolspec  | Specify Hull-White interest-rate volatility process.      |

#### **Black-Karasinski Utilities**

| Function  | Purpose                                                                     |
|-----------|-----------------------------------------------------------------------------|
| bondbybk  | Price bond from Black-Karasinski interest-rate tree.                        |
| capbybk   | Price cap instrument from Black-Karasinski interest-rate tree.              |
| cfbybk    | Price arbitrary set of cash flows from Black-Karasinski interest-rate tree. |
| fixedbybk | Price fixed-rate note from Black-Karasinski interest-rate tree.             |

| Function   | Purpose                                                            |
|------------|--------------------------------------------------------------------|
| floatbybk  | Price floating-rate note from Black-Karasinski interest-rate tree. |
| floorbybk  | Price floor instrument from Black-Karasinski interest-rate tree.   |
| optbndbybk | Price bond option from Black-Karasinski interest-rate tree.        |
| swapbybk   | Price swap instrument from Black-Karasinski interest-rate tree.    |

#### **Hull-White Utilities**

| Function   | Purpose                                                               |
|------------|-----------------------------------------------------------------------|
| bondbyhw   | Price bond from Hull-White interest-rate tree.                        |
| capbyhw    | Price cap instrument from Hull-White interest-rate tree.              |
| cfbyhw     | Price arbitrary set of cash flows from Hull-White interest-rate tree. |
| fixedbyhw  | Price fixed-rate note from Hull-White interest-rate tree.             |
| floatbyhw  | Price floating-rate note from Hull-White interest-rate tree.          |
| floorbyhw  | Price floor instrument from Hull-White interest-rate tree.            |
| optbndbyhw | Price bond option from Hull-White interest-rate tree.                 |
| swapbyhw   | Price swap instrument from HJM interest-rate tree.                    |

#### **Tree Manipulation**

| Function      | Purpose                                                  |
|---------------|----------------------------------------------------------|
| cvtree        | Convert inverse discount tree to interest-rate tree.     |
| mktrintree    | Create recombining trinomial tree.                       |
| trintreepath  | Extract entries from node of recombining trinomial tree. |
| trintreeshape | Retrieve shape of recombining trinomial tree.            |

#### **Recombining Trinomial Trees**

The interest-rate or price trees supported in this toolbox can be either binomial (two branches per node) or trinomial (three branches per node). Typically, binomial trees assume that underlying interest rates or prices can only either increase or decrease at each node. Trinomial trees allow for a more complex movement of rates or prices. With trinomial trees the movement of rates or prices at each node is unrestricted (for example, up-up-up or unchanged-down-down).

#### **Enhancement to the treeviewer Function**

The treeviewer function, which provides a graphical display of rates and prices, has been modified to display recombining trinomial trees.

#### Version 3.0 (R14) Financial Derivatives Toolbox Software

This table summarizes what's new in Version 3.0 (R14):

| New Features and Changes | Version Compatibility Considerations | Fixed Bugs and Known<br>Problems |
|--------------------------|--------------------------------------|----------------------------------|
| Yes<br>Details below     | No                                   | No bug fixes                     |

New features and changes introduced in this version are:

- "Support for Equity Derivatives" on page 34
- "Enhancement to the treeviewer Function" on page 36

#### **Support for Equity Derivatives**

Starting with Version 3.0, Financial Derivatives Toolbox software supports two types of recombining tree models to represent the evolution of stock prices: the Cox-Ross-Rubinstein (CRR) model and the Equal Probabilities (EQP) model. The CRR and EQP models are examples of discrete time models. A discrete time model divides time into discrete bits, and prices can be computed at these specific times only.

The CRR model is one of the most common methods used to model the evolution of stock processes. The strength of the CRR model lies in its simplicity. It is a good model when dealing with a large number of tree levels. The CRR model yields the correct expected value for each node of the tree and provides a good approximation for the corresponding local volatility. The approximation becomes better as the number of time steps represented in the tree is increased.

The EQP model is another discrete time model. It has the advantage of building a tree with the exact volatility in each tree node, even with small numbers of time steps. It also provides better results than CRR in some given trading environments, e.g., when stock volatility is low and interest rates are high. However, this additional precision causes increased complexity, which is reflected in the number of calculations required to build a tree.

#### **New Functions in Version 3.0**

The following set of functions has been added to the toolbox for Version 3.0.

#### **Price and Sensitivity from Cox-Ross-Rubinstein Trees**

| Function    | Purpose                                            |
|-------------|----------------------------------------------------|
| crrprice    | Instrument prices from a CRR tree.                 |
| crrsens     | Instrument prices and sensitivities by a CRR tree. |
| crrtimespec | Specify time structure for a CRR tree.             |
| crrtimespec | Construct a CRR stock tree.                        |

#### **Cox-Ross-Rubinstein Utilities**

| Function      | Purpose                              |
|---------------|--------------------------------------|
| asianbycrr    | Price Asian option by a CRR tree.    |
| barrierbycrr  | Price barrier option by a CRR tree.  |
| compoundbycrr | Price compound option by a CRR tree. |
| lookbackbycrr | Price lookback option by a CRR tree. |
| optstockbycrr | Price stock option by a CRR tree.    |

#### **Price and Sensitivity from Equal Probabilities Binomial Trees**

| Function    | Purpose                                                        |
|-------------|----------------------------------------------------------------|
| eqpprice    | Instrument prices from an EQP binomial tree.                   |
| eqpsens     | Instrument prices and sensitivities from an EQP binomial tree. |
| eqptimespec | Specify time structure for EQP tree.                           |
| eqptree     | Construct EQP stock tree.                                      |

#### **Equal Probabilities Tree Utilities**

| Function      | Purpose                               |
|---------------|---------------------------------------|
| asianbyeqp    | Price Asian option by an EQP tree.    |
| barrierbyeqp  | Price barrier option by an EQP tree.  |
| compoundbyeqp | Price compound option by an EQP tree. |
| lookbackbyeqp | Price lookback option by an EQP tree. |
| optstockbyeqp | Price stock option by an EQP tree.    |

#### **Instrument Portfolio Handling**

| Function     | Purpose                               |
|--------------|---------------------------------------|
| instasian    | Construct Asian option instrument.    |
| instbarrier  | Construct barrier option instrument.  |
| instcompound | Construct compound option instrument. |
| instlookback | Construct lookback instrument.        |
| instoptstock | Construct stock option.               |

#### **Enhancement to the treeviewer Function**

The treeviewer function, which provides a graphical display of rates and prices, has been modified to accept Cox-Ross-Rubenstein (CRR) and Equal Probabilities (EQP) equity trees as input.

# Compatibility Summary for Financial Derivatives Toolbox Software

This table summarizes new features and changes that might cause incompatibilities when you upgrade from an earlier version, or when you use files on multiple versions. Details are provided with the description of the new feature or change.

| Version (Release)               | New Features and Changes with Version<br>Compatibility Impact |
|---------------------------------|---------------------------------------------------------------|
| Latest Version<br>V5.7 (R2011a) | None                                                          |
| V5.6 (R2010b)                   | None                                                          |
| V5.5.1 (R2010a)                 | None                                                          |
| V5.5 (R2009b)                   | None                                                          |
| V5.4 (R2009a)                   | None                                                          |
| V5.3 (R2008b)                   | None                                                          |
| V5.2 (R2008a)                   | None                                                          |
| V5.1 (R2007b)                   | None                                                          |
| V5.0 (R2007a)                   | None                                                          |
| V4.1 (R2006b)                   | None                                                          |
| V4.0.1 (R2006a)                 | None                                                          |
| V4.0 (R14SP3)                   | None                                                          |
| V3.0 (R14)                      | None                                                          |